EQUAÇÃO GERAL DE GRACELI.
G ψ = E ψ = E [G+].... =
G ψ = E ψ = E [G+ψ ω /c] = [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x [ t ]..
Considere-se formalmente o exemplo apresentado na introdução. Considere um par de partículas de spin 1/2, A e B, na qual nos unicamente consideraremos o spin observável (em particular sua mudança de posição). Como um sistema isolado, A partícula A é descrita por um Espaço de Hilbert de duas dimensões HA; similarmente a partícula B é descrita por um Espaço de Hilbert HB. O sistema composto é descrito pelo produto tensor:
- / G ψ = E ψ = E [G+]....
o qual é de dimensão 2 x 2. Se A e B não estão interagindo, o conjunto de tensores puros
- / G ψ = E ψ = E [G+]....
é invariante no que se refere a evolução temporal; de fato, nos somente consideramos os observáveis do spin para os quais as partículas isoladas são invariantes, o tempo não terá efeito a prior na observação. Porém, apos a interação, o estado do sistema composto é um possível estado de entrelaçamento quântico, o qual não é um tensor puro.
O estado de entrelaçamento mais geral é uma soma
- / G ψ = E ψ = E [G+]....
Para este estado corresponde um operador linear HB → HA o qual aplica estados puros para estados puros.
- / G ψ = E ψ = E [G+]....
Esta aplicação (essencialmente numa normalização modular do estado) é o aplicação do estado relativo definido por Everett, como associado a um estado puro de B correspondente a estado relativo(puro) associado de A. Mais precisamente, há uma única decomposição polar de TΦ tal que
- / G ψ = E ψ = E [G+]....
e U é uma aplicação isométrica definido em algum subespaço de HB. Veja também decomposição de Schmidt.
Note que a matriz de densidade do sistema composto é pura. Porém, é também possível considerar a matriz densidade reduzida descrevendo a partícula A isolada tomando o traço parcial sobre os estados da partícula B. A matriz de densidade reduzida, ao contrario da matriz original descreve um estado misto. Este exemplo em particular é baseado no paradoxo EPR.
O exemplo anterior pode ser generalizado facilmente para sistemas arbitrários A, B sem nenhuma restrição na dimensão de espaço de Hilbert correspondente. Em geral, o estado relativo é uma aplicação linear isométrica definida no subespaço de HB para valores em HA.
Traço Parcial e estado relativo
A transformação de um sistema quântico resultante do processo de medição, tal como na experiência de dupla fenda discutida acima, pode ser facilmente descrita matematicamente de uma forma que seja consistente a maioria dos formalismos matemáticos. Nos iremos apresentar uma destas descrições, também chamada de estado reduzido, baseada no conceito traço parcial, o qual pode ser processo pela interação, resume para um tipo de conhecimento formalismo muitos mundos. Isto então é um pequeno passo do formalismo de muitos mundos para a interpretação de muitos mundos.
Por definição, assumir-se-á que o sistema sempre é uma partícula tal como o elétron. A discussão do estado reduzido e muitos mundos não é diferente no caso que se nos considerarmos qualquer outro sistema físico, incluindo um "sistema observador". No que se segue, nos deveremos considerar não somente estados puros para o sistema, mas mais genericamente estados mistos.
Estes são certamente operadores lineares no espaço Hilbertiano H descrevendo o sistema quântico. Sem duvida, como vários cenários medição apontados, o conjunto de estados puros não relacionados com a medição. Matematicamente, a matriz de densidade são misturas estatísticas de estados puros. Operacionalmente um estado misto pode ser identificado como a agrupamento estatístico resultante de um especifico procedimento preparação laboratorial.
Estados coerentes como estados relativos
Suponha que tenhamos um agrupamento de partículas tal que o estado S dele é puro. Isto significa que haverá um vetor unitário ψ em H tal que S é o operador dado em notação bra-ket pela fórmula seguinte:
- / G ψ = E ψ = E [G+]....
Agora consideremos um experimento para determinar se a partícula deste agrupamento tem uma propriedade particular: Por exemplo, a propriedade poderia ser a localização da partícula em alguma região A do espaço. O experimento pode ser preparado para se comportar seja como uma medição de um observador ou seja como um filtro. Como uma medição, determinará que a variável Q assume o valor 1 se a partícula se encontra em A e 0 no caso contrario. Como um filtro, ele deixará passar somente aquelas partículas que se encontram em A e impedindo a passagem das outras.
Matematicamente, uma propriedade é dada pela sua projeção autoadjunta E no espaço de Hilbert H: Aplicando o filtro para um pacote de partículas, algumas delas serão rejeitadas, e outras passam. Agora será possível mostrar que uma operação de filtro ocasiona o "colapso" do estado puro como no seguinte exemplo: prepara-se um novo estado composto dado pelo operador densidade
- / G ψ = E ψ = E [G+]....
onde F = 1 - E.
Para ver isto, note-se que como um resultado da medição, o estado das partículas imediatamente após a medição é um eigevetor de Q, que é um dos dois estados puros...
- / G ψ = E ψ = E [G+]....
com as respectivas probabilidades
- / G ψ = E ψ = E [G+]....
A forma matemática da de apresentação deste estado combinado é pela utilização de combinação convexa de estados puros:
- / G ψ = E ψ = E [G+]....
na qual o operados S1 acima.
Comentário. O uso da palavra colapso neste contexto é de alguma maneira diferente daquela usada na explicação da interpretação de Copenhague. Nesta discussão não se irá referir a um colapso ou transformação da onda em nenhuma parte, mas particularmente da transformação de um estado puro em um estado misto.
As considerações precedente são completamente padrões da maioria dos formalismos da mecânica quântica. Agora considere um sistema "ramificado" o qual seguindo espaço de Hilbert é
- / G ψ = E ψ = E [G+]....
onde H2 é uma espaço de Hilbert bi-dimensional com vetores de base and . A ramificação no espaço pode ser entendida como um sistema composto constituído do sistema original (do qual agora é um subsistema) juntamente com um sistema não-interativo subordinado qbit simples. No sistema ramificado, considere o estado entrelaçado
- / G ψ = E ψ = E [G+]....
Nos podemos expressar este estado na matriz de densidade formatado como . Multiplicando resulta em:
/G ψ = E ψ = E [G+]....
O traço parcial do estado misto foi obtido pela somatória dos coeficientes do operador de and na expressão acima. Isto resulta em estado misto em H. De fato, este estado misto é idêntico ao estado composto "pos filtragem" S1 acima.
Sumarizando, nos temos descrição matemática do efeito do filtro para a partícula no estado puro ψ no seguinte caminho:
- O estado original é ampliado com sistema qubit subordinado.
- O estado puro do sistema original é substituído por um estado de entrelaçamento puro de um sistema subordinado e
- O estado pós-filtro do sistema é o traço parcial do estado entrelaçado para o estado subordinado.
Ramificações múltiplas
No curso do tempo de vida do sistema esperar-se-ia que muitos eventos de filtragem ocorressem. A cada um destes eventos, uma ramificação ocorre. De forma que isto seja consistente com estrutura de ramificação como descrito na ilustração acima, nos deveremos mostrar que se um evento de filtragem ocorre em um dos caminhos do nodo raiz da árvore, então teremos que assumir que ele ocorrera em todas as ramificações. Isto mostra que a árvore é consideravelmente simétrica, que é para cada nodo n da árvore, a forma da árvore não muda pelo intercâmbio da subárvores imediatamente abaixo deste nodo n.
De forma a mostrar esta propriedade de uniformidade de ramificação, note que alguns cálculos resultam no mesmo se o estado original de S é composto. De fato, o estado pós-filtragem será o operador de densidade:
- / G ψ = E ψ = E [G+]....
O estado S1 é o caminho parcial de
/G ψ = E ψ = E [G+]....
Isto significa que cada medição subsequente (ou ramificação) ao longo de um destes caminhos da raiz da árvore para um nodo folha corresponde a uma ramificação homologa ao longo de cada caminho. Isto garante a simetria da árvore de muitos mundos em relação a rotação os nodos filhos de cada nodo.
Operadores quânticos gerais
Nas duas seções anteriores, tem-se a representação da operação de medição em sistemas quânticos em termos de estados relativos. De fato existe uma classe mais ampla de operadores que devem ser considerados: estes são conhecidos como operadores quânticos. Considerado as operações com operadores densidade no sistema de espaço Hilbertiano H, isto se dará da seguinte forma:
- / G ψ = E ψ = E [G+]....
onde I é um conjunto finito ou indexado infinitamente comutável. Os operadores Fi são chamados de operadores de Kraus.
'Teorema. Dado
- / G ψ = E ψ = E [G+]....
Então
- / G ψ = E ψ = E [G+]....
Além disso, o mapeamento V definido por
- / G ψ = E ψ = E [G+]....
é tal como
- G ψ = E ψ = E [G+]....
Se γ é uma operador quântico que preserva o caminho, então V é um mapa linear isométrico
- / G ψ = E ψ = E [G+]....
Onde a soma direta de Hilbert e feita sobre todas as copias de H indexadas pelos elementos de I. Podemos considerar tais mapas Φ como embutidos. Em particular:
Corolário. Qualquer operador quântico que preserve o caminho é a composição de uma isometria embutida e um caminho parcial.
Isto sugere que o formalismo de muitos mundos pode ser considerado para uma classe mais geral de transformações da mesma forma que foi feita para uma simples medição.
Ramificação
Em geral, pode-se mostrar a propriedade da ramificação uniforme da árvore como se segue: Se
- / G ψ = E ψ = E [G+]....
e
- / G ψ = E ψ = E [G+]....
onde
- / G ψ = E ψ = E [G+]....
e
- / G ψ = E ψ = E [G+]....
então um calculo fácil mostra
- / G ψ = E ψ = E [G+]....
Isto também demonstra que entre as medições propriamente ditas dos operadores quânticos (isto é, não-unitária), podemos interpolar uma arbitraria evolução unitária.
Comentários
Postar um comentário