EQUAÇÃO GERAL DE GRACELI.

 G ψ = E ψ =  E [G+]....   =

G ψ = E ψ =  E [G+ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ]..



lei de Wien (ou lei do deslocamento de Wien) é a lei da física que relaciona o comprimento de onda onde se situa a máxima emissão de radiação eletromagnética de corpo negro e sua temperatura:[1]

 . /
G ψ = E ψ =  E [G+]....   

Nessa expressão,  é o comprimento de onda (em metros) para o qual a intensidade da radiação eletromagnética emitida é máxima,  é a temperatura do corpo em kelvins, e  é a constante de proporcionalidade, chamada constante de dispersão de Wien, em m.K (metro x Kelvin).

O valor dessa constante é  m.K

O que resulta em:

 /
G ψ = E ψ =  E [G+]....   

Conforme a lei de Wien, quanto maior for a temperatura de um corpo negro, menor será o comprimento de onda para o qual a emissão é máxima. Por exemplo, a temperatura da fotosfera solar é de 5 780 K e o pico de emissão se produz a 475 nm =. Como 1 angstrom 1 Å= 10−10 m=10−4 µm resulta que o máximo ocorre a 4 750 Å.





Lei de Stefan-Boltzmann (mais conhecida como Lei de Stefan) estabelece que a energia total radiada por unidade de área superficial de um corpo negro na unidade de tempo (radiação do corpo negro), (ou a densidade de fluxo energético (fluxo radiante) ou potencia emissora), j* é diretamente proporcional à quarta potência da sua temperatura termodinâmica T:

 /
G ψ = E ψ =  E [G+]....   

[1]

constante de proporcionalidade (não é uma constante fundamental) é chamada constante de Stefan-Boltzmann ou constante de Stefan σ. A lei foi descoberta de jeito experimental por Jožef Stefan (1835-1893) no ano 1879 e derivada de jeito teórico no marco da termodinâmica por Ludwig Boltzmann (1844-1906) em 1884. Boltzmann supôs uma máquina térmica ideal com luz como substância de trabalho semelhante a um gás. Esta lei é a única lei da natureza que leva o nome de um físico esloveno. Hoje pode-se derivar a lei da Lei de Planck sobre a radiação de um corpo negro:

 /
G ψ = E ψ =  E [G+]....   

e é válida só para objetos de cor negra ideal, os perfeitos radiantes, chamados corpos negros. Stefan publicou esta lei o 20 de março no artigo Über die Beziehung zwischen der Wärmestrahlung und der Temperatur (Das relações entre radiação térmica e temperatura) nos Boletins das sessões da Academia das Ciências de Viena.





Energia de translação e gases ideais

Ver artigo principal: Gás ideal

A energia cinética (newtoniana ou clássica) de uma partícula de massa m e velocidade v é dada pela expressão:

 /
G ψ = E ψ =  E [G+]....   

onde vxvy e vz são as componentes cartesianas da velocidade vH é o hamiltoniano, e portanto será utilizado como símbolo da energia dado que a mecânica de Hamilton desempenha um papel destacado na forma mais geral do teorema da equipartição.

Como a energia cinética é quadrática nos componentes da velocidade, por equipartição destas três componentes, cada uma contribui com ½kBT para a energia cinética média em equilíbrio térmico. Portanto, a energia cinética da partícula é (3/2)kBT, como no caso do exemplo dos gases nobres discutido previamente.

De forma mais geral, num gás ideal, a energia total consiste exclusivamente de energia cinética de translação: já que se assume que as partículas não possuem graus internos de liberdade e se movem de forma independente umas das outras. A equipartição portanto prediz que a energia total média de um gás ideal com N partículas é (3/2) N kBT.

Portanto, a capacidade térmica de um gás é (3/2) N kB e a capacidade térmica de um mol de partículas de dito gás é (3/2)NAkB=(3/2)R, onde NA é o número de Avogadro e R é a constante universal dos gases perfeitos. Como R ≈ 2 cal/(mol·K), a equipartição prediz que a capacidade térmica molar de um gás ideal é aproximadamente 3 cal/(mol·K). Esta predição foi confirmada experimentalmente.[3]

A energia cinética média também permite calcular a raiz da velocidade quadrática média vrms das partículas de gás, como:

 /
G ψ = E ψ =  E [G+]....   

onde M = NAm é a massa de um mol de partículas de gás. Este resultado é muito útil para aplicações tais como a Lei de Graham de efusão, da qual se deriva um método para enriquecer Urânio.[4]

Energia rotacional e agitação molecular em solução

Ver artigo principal: Velocidade angular e Difusão rotacional

Um exemplo similar é o do caso de uma molécula que roda e cujos momentos de inercia principais são I1I2 e I3. A energia rotacional de dita molécula é dada por:

 /
G ψ = E ψ =  E [G+]....   

onde ω1ω2, e ω3 são os componentes da velocidade angular. Seguindo um raciocínio similar ao utilizado no caso da translacção, a equipartição implica que, em equilíbrio térmico, a energia média de rotação de cada partícula é (3/2)kBT. De forma similar, o teorema da equipartição permite calcular a velocidade angular média (mais precisamente, a raiz média quadrática) das moléculas.[5]

A rotação das moléculas rígidas — ou seja, as rotações aleatórias de moléculas em solução — joga um papel de destaque nas relaxações observadas por meio de ressonância magnética nuclear, particularmente por ressonância magnética nuclear de proteínas e por acoplamento dipolar residual.[6] A difusão rotacional pode também ser observada mediante outras técnicas biofísicas tais como a anisotropia fluorescente, a birrefringência de fluxo e a espectroscopia dieléctrica.[7]

Energia potencial e osciladores harmónicos

A equipartição aplica-se tanto à energia potencial com à energia cinética. Exemplo importante disto são os osciladores harmónicos tais como as molas, que possuem una energia potencial quadrática:

 /
G ψ = E ψ =  E [G+]....   

onde a constante a descreve a rigidez da mola e q é o desvio em relação ao equilíbrio. Se dito sistema unidimensional possui uma massa m, então a sua energia cinética Hkin é ½mv² = p²/2m, com v e p = mv a velocidade e o momento do oscilador, respectivamente. Combinando estes termos obtém-se a energia total[8]:

 /
G ψ = E ψ =  E [G+]....   

Deste modo, a equipartição implica que, em equilíbrio térmico, o oscilador possui uma energia média:

 /
G ψ = E ψ =  E [G+]....   

onde os colchetes angulares  representam a média da quantidade contida entre eles.[9]

Este resultado é válido para todo o tipo de osciladores harmónicos, como por exemplo num pêndulo, numa molécula que vibra ou num oscilador electrónico passivo. Existem numerosos sistemas que contêm este tipo de osciladores; mediante a equipartição, cada um destes osciladores recebe uma energia média total kBT e portanto contribui kB para a capacidade térmica do sistema. Esta última relação pode ser usada para obter a fórmula para o ruído de Johnson–Nyquist ou "ruído térmico"[10] e a Lei de Dulong-Petit para a capacidade térmica molar dos sólidos. Esta última aplicação foi especialmente relevante na história da equipartição.




Comentários

Postagens mais visitadas deste blog